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Quantization of classical maps with tunable Ruelle-Pollicott resonances
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We investigate the correspondence between the decay of correlation in classical systems, governed by
Ruelle-Pollicott resonances, and the properties of the corresponding quantum systems. For this purpose we
construct classical dynamics with controllable resonances together with their quantum counterparts. As an
application of such tunable resonances we reveal the role of Ruelle-Pollicott resonances for the localization
properties of quantum energy eigenstates.
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[. INTRODUCTION preserving, coupled baker maps on the sphere. These model
systems are introduced in Sec. Il, where we also show how
The quantum-classical correspondence of non-integrabl find their periodic orbits, approximate resonances, and cal-
systems has been studied for a long time. In recent years thgilate the traces of the Frobenius-Perron operators associated
role of classical Ruelle-Pollicott resonances for the dynamicsyith them. Construction of the corresponding quantum
of the quantum counterparts has become a point of interegfropagators together with the comparison of quantum and
[1-4]. The classical time evolution can be described in thegjassical dynamics is presented in Sec. lll. In Sec. IV we
Liouville picture as the propagation of the phase-space dennyestigate how Ruelle-Pollicott resonances give rise to the
sity p(x,t), wherex denotes a point in phase space. Thegeyiations from the random-matrix theory. Eventually, in
corresponding propagatét is called Frobenius-Perrofff?)  sec. v we present the model of coupled random matrices
operator and can be defined by which can be considered as a simplification of the systems
introduced in Sec. Il.

P(X,t)=j dx’ S(x—F'(x"))p(x",0=P'p(x,0, (1)
Il. COUPLED BAKER MAPS

where F is the flow in the phase space generated by the We are interested in classical dynamical systems for
dynamicsx(t) =F'(x(0)). The poles of the resolvent of this which there exists a Ruelle-Pollicott resonance with large
operator are the Ruelle-Pollicott resonanég$]. It turns out  modulus. Such a resonance governs the long-time behavior
that these resonances correspond to decay rates of classiolthe system and is easy to detect.
correlation functions describing the relaxation process in a The idea standing behind our model systems is rather
chaotic systeni7]. The presence of the Ruelle-Pollicott reso- simple. Suppose our system is initially composed out of two
nances related to slow decay of correlations can explain nordlisconnected subsystems. An arbitrary initial density placed
universal behavior of the corresponding quantum systermin one of those subsystems will not spread into the other
i.e., deviations from predictions of the random-matrix theorysubsystem. The system as a whole will thus have two invari-
(RMT) analyzed, e.g., in Ref8]. ant (stationary densities, one for each subsystéamd the

In order to reveal such effects of resonances we first conlinear combinations therepfThis fact will be reflected in the
struct a classical system with an isolated, controllable resospectrum of the Frobenius-Perron operator as a doubly de-
nance which can be computed analytically. We focus ougenerated eigenvalue,=\,=1. However, if we introduce
considerations on dynamical systems with compact phasa small coupling between both subsystems, the density from
spaces, in particular the unit sphere. Periodic driving deone subsystem will slowly leak into the other one and even-
stroys integrability, where the stroboscopic description oftually reach the invariant density of the entire system. As a
such a dynamics is given by a Hamiltonian map. For thisresult of the coupling, the degeneracy of the spectrum will be
case the Ruelle-Pollicott resonances are located inside tHiéted. The largest eigenvalué ;=1 corresponds to the
unit circle of the complex plane, while decay rates are relatedinique invariant density of the entire system, while the other
to the moduli of resonances. For the quantum counterpart theigenvalue\, with |\,|=1—€<1 corresponds to a meta-
stroboscopic description of the propagation of wave funcstable state. The smaller the spectral gaghe longer the
tions is given by a unitary Floquet operator. The eigenphasedecay time of the state.
of that operator are also called quasieigenenergies. For the internal dynamics of both subsystems we choose

Analytical calculations of Ruelle-Pollicott resonances arethe standard baker map acting on a unit square—a well
feasible for purely hyperbolic system8,10]. We introduce known model of chaotic dynami¢41]. One possible way to
dynamics that are not Hamiltonignontinuous but still area  introduce the coupling is described by
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[((2y—1x/2+1/2), y=z,x<1/2 Accordingly for this system the coupling strength parameter

is given byA=z. The full coupling A=1/2) limits of sys-
(2y=1xi2+1/4), ye[1/27),x<1/2 tems(2) and(3) coincide and correspond to the baker map
(2y,x/2), y<12x<1/2 on the sphere defined in R¢fL2].
(y' . x)=F(y.x)= (2y—1x/2) y=2,x>1/2 Our ultimate goal is to construct a quantum system corre-
T ’ sponding to the classical system with a large resonance and
(2y—=1x/2+1/4), ye[ll22),x>1/2 {5 jnvestigate the influence of the classical resonance on the
{ (2y,x/2+1/2), y<1/2x>1/2, properties _of t_he qu_antum system._For this purpose we make
2 use of periodic orbits of the classical system and the spec-
trum of the Frobenius-Perron operator corresponding to the
classical system—which we will approximate by introduc-
tion of a stochastic perturbation into the system. Hence the
following two sections are devoted to these subjects.

whose action is depicted in Fig. 1. In the limiting case
=1 the partsA; andA, vanish and there exist two separated
subsystems, with indices 1 ande&ach of them equivalent to
the standard baker mapFor z<1 both subsystems are
coupled together. To describe the strength of the coupling we

introduce a parametex=1—z which varies from 0 to 1/2. B. Periodic orbits of the classical system

For the determination of the periodic orbits of the system
) o ] we will use the Markov partition. For any dynamical system
We now present a slightly modified version of mé)  F it is defined as a such partitiahof the phase space into
which results in the resonance of a large modulus with negage|s that the borders of each cell are composed of segments

tive sign. Thus we call both versions of the model as “posi-of staple and unstable manifolds of the system. Additionally
tive” and “negative” coupling depending on the sign of the this partition has to fulfil

resonance.

We start again with two uncoupled baker maps. In addi- F(90)CaLC, (4)
tion to their internal dynamics, we assume that in every it-
eration of the map both subsystems exchange their positions.
The FP operator corresponding to such a system will thus
have two eigenvalues of unit modulus;=+1 and A, ) -
=—1. Any small coupling of both subsystems will cause theS0 the image of the stable part of the partition boundagy
density placed in one subsystem to slowly leak into the otheis contained inJsC and the unstable part of the boundagy
one, so the entire system will possess a resonance of largentains its preimagg7]. Such a partition generates a sym-
modulus and its negative sign will reflect oscillatory naturebolic dynamics with &-letter alphabet which is a topologi-

A. The system with a negative coupling

F 9,0 Ca,C, (5)

of the system. cal Markov chain. In the following we will concentrate on
The version of the coupling that we have chosen is presystem(2), since most of the results below can be translated
sented in Fig. 2 and is defined by directly to system3), and we will only emphasize important
' WY =F differences.
(¥ X =F(y.x) For system(2) we are able to find a Markov partition for
[((2y—1x/2+1/2), y=1/2x<1/2 sever;l( values of the coupling parameterFor example, for
A=1/2 with naturalk this partition is defined by a set of
(2y,x/2+3/4), yel[z1/2)x<1/2 horizontal linesy;=1—1/2 wherei=1, . .. k and a vertical
(2y,x/2), y<z,Xx<1/2 line atx=1/2. It is easy to verify that under the action of Eq.
- (2y—1x/2), y=1/2x>1/2 (3 (2) each coordinatey; is mapped toy;_; and eventually

tends toy,;=1/2 which is mapped30] to y=0.

(2y,x12—1/4), ye[z,1/2),x>1/2 Basing on this partition we can construct a transition ma-

| (2y,x/2+1/2), y<z,x>1/2. trix T with entriesT;; equal to probabilities that the system
1 1
/AI/ Az B, //3’1
L~ B, Ba /7, 2 1 FIG. 2. Action of map(3) for z=1/4.
0 C1 Ca 0 / / /
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passes from the cell to the cellj. For simple piecewise 0
linear maps an agreement between the resonance of the cor- IRT-SEE °
responding Frobenius-Perron operator with the second larg- o

est modulus and the eigenvalue of this matrix was observed 0.8 = BT |
[9]. The dimension of the transition matrix for syste®) g e

with A=1/2¢ grows linearly withk according tok =dimT )
=2(k+1), and one can easily obtain its eigenvalues. For 0o7h .
instance, folk=3 (A =1/8) the second largest eigenvalue is 6 *
equal\, ~—0.8846, while in case of negative couplif®) ‘
A, = —\, —see Appendix A,

I,
*

0.6

The transition matrixT for the system(2) enables us to 0 20 40 :2 80 100 120
specify periodic orbits of the system. The number of periodic
points is given directly by FIG. 3. Dependence of the modulus of the second largest eigen-
N N value of the FP operator for the stochastically perturbed coupled
HOGy): () =F"(x,y)}=tr T", (6) baker maps on the sphere on the noise paranvtafalues for the

) o ] system(2) and (3) are represented b§ and *, respectively(in
where we introduced the connectivity matfix(sometimes  poth cases\ =1/8). The dashed line represents the deterministic

called topological transition matrik7]) defined as a transi- |imit.
tion matrix with all nonzero entries replaced by 1,
) system defined on the sphere. A possible choice of the prob-
1 if ;>0 ability density of the stochastic perturbation which trans-

Tij= 0 otherwise. ™ forms a pointQ)=(6,¢) on the sphere int€)'=(6',¢") is
Itis worth to note that formul¢6) is valid only if none of the ., (Q.0)= M+1/1+cosE|\"
periodic orbit crosses the boundary of the partiion— M ' 4 2
otherwise we have to take into account that a given symbolic
sequence may not define a point in the phase space uniquely, M+1 > M} (M
so it might happen that one orbit is counted more than once. 4r ol kL

One can verify that there is no such problem for sys{@m

but this is not the case for systef8). Periodic sequences

w,=B;A, andw,=B,A; (see Fig. 2 correspond to the or-

bits starting from the same initial poirt= 1/2, y=1/3 which

belongs to the partition line. This fact needs to be taken into

account during calculations of the traces of the FP operator.
Note also that system®) and (3), originally defined on

the square(torus may also represent dynamics on thewhereM is an arbitrary natural number. Heg is the angle

sphere, wherg— cos# andx— ¢. In this case the entire line formed by two vectors pointing toward the poirftsand()’

y=0 has to be identified with the south poland liney  on the sphere. As discussed in RéfE3,16 the matrix rep-

=1 with the north pole, respectivelyso the number of pe- resentation of the Frobenius-Perron operator for system with

riodic orbits in both systems may differ. such a noise is finite dimensional—the last equation in Eq.

(8) helps to identify the basis functions of the matrix repre-

sentation. For the probability distributidi®) the dimension

i ) of the matrix is M+ 1)? and grows to infinity in the deter-
We are not able to find analytically resonances of systems,inistic limit M—co, for which P.(Q',Q)=8(Q—Q')

(2) and (3) (apart from the second largest which we obtainy;i respect to the uniform measure on the sphei®,

from the transition matrQ( To approximate _them we follow  _ i 6d6de. However, for any finiteM one obtains a finite

an approach developed in Ref$3-17 and introduce a sto-  representation of the FP operator and may diagonalize it nu-

chastic perturbation into the system. This allows us to réPrémerically [31]. In this way we obtain the exact spectrum for

sent the Frobenius-Perron operator corresponding 1o the Syge system with noise and by decreasing the noise amplitude

tem with noise as a finite dimensional matrix. _ we can approximate the resonances of the deterministic sys-
In Sec. Ill we define quantum propagators correspondinger, Figure 3 presents the dependence of the modulus of the

to systems(2) and (3). In order to use well known S@)  gsecond Jargest eigenvalig of systems2) and(3) subjected
coherent stated 821 we convert appropriate definitions of 5 4qgditive noise(8) on the noise parametd [32]. The

the classical systems into the unit sphere by applying th@eerministic limit—represented in Fig. 3 as a dashed
Mercator projection. More formally, we replacewith ¢ jine__js the same for both systems and is obtained from the
=2mx andy with t=cos¢=2y—1, wheree and ¢ are the  ansjtion matrix defined in the preceding section. The most
usual spherical coordinates. The paramater(0,3) defined striking observation is that although the deterministic value
previously plays the same role of the coupling constant. Acof |\,| for both systems is the same, the approximations of
cordingly we should approximate resonances for the classical, for a given value of the noise paramekédiffer. This can

X

Sinngcc)szM(k*l)gei(lkw)

!

0’ 0 )
> Sink+|?CoszM—(kH)?e—l(l—k)q» ) (8)

C. Approximation of the Frobenius-Perron spectrum
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be understood with the help of Fig. 4, where we showed thdo obtain the expression for the traces it is sufficient to iden-
result of the second iteration of the corresponding systemdify initial and final points in this expression, that is,
The total length of the boundary between subsystems 1 and 2

for the negative couplingright plot) is one and half times

larger than for the positive coupling. Thus in the case of the tr Pn:f dQs(Q—-F"(Q))

negative coupling it is more likely that points will move

from one subsystem to the other one under the action of the 1

stochastic perturbation. The overall decay rate in the pres- = E TP NN (10

- n e
ence of the noise is thus faster than in the case of the positive 0;:0,-F) |de(l—3%Q)|

coupling, which is reflected in the spectrum as a smaller

modulus of the subleading eigenvalhg. whereJd"();) denotes the Jacobian matrix of the mapgiy

evaluated in poinf); and we make use of the properties of

the & function in the last equality. The calculation of the

denominator in Eq(10) is easy, since our systems are purely
For the semiclassical analysis we will need the traces ofyperbolic with constant stretching and squeezing by a factor

the Frobenius-Perron operat®@massociated with the classical of 2. Thus the contribution of each fixpoint to the traceP8f

system. Approximation of the traces with the help of stochasig equal to[2"+2""—2]"L. The only periodic points that

tic perturbation is straightforward, since we obtain eigenvalnee( special attention are the south and the north pole

ues\; of the FP operator for the noisy system and we carsince—due to the discontinuities—expressitt) is not

D. Traces of the Frobenius-Perron operator

calculate the traces directly from the definition well defined in these points. In order to calculate the contri-
bution from these points we “regularized” the integral
tr pnzz Al (9) (10—see Appendix B. Having done that we can combine
i

the contribution of the periodic points with their numbers
calculated from Eq(6). The traces, Fig. 5, calculated from
In order to calculate the traces with the use of periodic orbitghe approximate spectrum and periodic orbits are represented
we will use the integral representation of the FP operétpr by solid and dashed lines, respectively. These numerical re-

3 2m
(@ (b)
15
c c
o o
FIG. 5. Traces of the FP opera-
05 ! { tor: (a) positive coupling(2) with
A=1/8, (b) negative couplind3)
0 (A=1/8), and(c) full coupling
40 0 10 Qr? 30 40 corresponding to systerf®) with
A=1/2[or to Eq.(3) also withA
2 =1/2]. Solid lines represent traces
© calculated from the approximate
spectrum of the FP operator, while
the traces obtained from the peri-
15 odic orbits are plotted with dashed
o lines.
: (TR
1} Wy
1
W
v
'
%% 10 20 30 40
n
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1 1
A1 Az Fp Vsl , , / FIG. 6. Baker map on the sphere in Mercator
t ¢ ¢ t Y Ax | A1 [/C projection ¢=cos#é,¢). This map is the full cou-
1 1 - % 1 / // pling limit (A= 1/2) of systemg2) and(3).
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sults demonstrate good agreement between two differeni Fig. 6 (or C; with C,), or their parts, before applying the

methods of Computing the traces of the FP Operator. DiSCfeR)peratorOB from Eq (12) Such an exchange may be ac-
ancies visible in Figs. ®) and 9¢) are due to the fact that complished by a rotation of the part of northern or southern
for system(3) the effective coupling is stronger as dISCUSSGdhemispheréfor maps(2) and(3), respectively around thez

at the end of Sec. Il C. axis by anglerr. This procedure is presented in Fig. 7 where
this partial rotation is denoted Hyy(A) andRg(A). Quan-
1. QUANTUM PROPAGATOR tum operators corresponding to these rotations have simple

In the construction of the quantum brobagator Corre_representation in thg,m) basis, since they are just multi-
d propag plication of the vector of coefficients by a phase factor

sponding to system&) and (3) we rely on the results pre- e '™ In both cases the matrix representation is diagonal

sented in Ref[12] in which the quantum baker map was P . :
defined on the sphere. The corresponding classical system%]g;?r the “positive” coupling(2) the diagonal elements are

obtained from Eqgs(2) and (3) in the full coupling limit A
=1/2 and its action is visualized in Fig. 6. The construction

. . . 1 for k<NA
of the quantum system is based on the matrix representation R -
of the rotation around thg axis by an angle o#r/2, RN(A) k= e 07K D7 for ke(NA,N/2) (15
1 for k>N/2,

im/2]

R m=(j,m[e”'™y|j,m"), (11

A ) while for “negative” coupling (3) the appropriate rotation
where J; is the ith component of the angular momentum operator has the following representation

operatorJ and |j,m) is an eigenvector of thd, operator,

J3,lj,my=mlj,m) with m=—j, ... j. In the following we 1 for k<N/2
choqse half.-integ_er spin valugsso the size of the rotation QS(A)k = e i—K+D7 for ke (N/2N(1—A))
matrix N=2j+ 1 is even. The resulting quantum propagator :
is defined ag12] 1 for k>N(1-A4),
(16)
. . R 0
Ug=R™| o &' (12 whereN=2j+1 is the dimension of the Hilbert spa¢ae

confine ourself to such values NfandA thatNA is integey.
Using these operators we define unitary quantum maps cor-

whereR’ andR” are matrices created by taking halves- : - ;
responding to classical systerf® and(3), respectively,

spectively, upper and lowenof every second column of the
rescaled Wigner rotation matri,

On=UgRn(A), (17)
R, =\2R k ! ' (13)
= —j Ym:_!"'lJ! ~ A A
e 2 0s=UgRs(A), (18
1 o .
b= \/ERk,Zerj . km=—j, ...~ 5 (14)  with Ug defined by Eq(12).
The constructior{12) is similar to the original quantum map Comparison of classical and quantum dynamics
on the torus proposed by Balazs and Voj28]: instead of In order to illustrate correctness of the proposed construc-
the Fourier matrix we use the Wigner rotation maffix tion of the quantum propagators, we make use of periodic

Now it is crucial to note that if we additionally exchange orbits of the classical systems. Suppose that for initial con-
the partsA; andA) in Fig. 6, we obtain the uncoupled ver- ditions for quantum dynamics we choose a wave function
sion of map(2) for A=0. The same happens if we exchangelocalized around some periodic point of the classical system.
the partsC; andC,—we obtain then mag3) for A=0. On  After the time equal to the period of the classical orbit the
the other hand, a partial exchange of these regions will resuftirobability of measuring the system near the initial point in
in maps withA>0. the phase space should be large. More precisely, for the ini-

The only question left is how to modify the definition of tial state we choose the $2) coherent statgd, ¢) localized
the quantum propagator in order to obtain the above menin point (6,¢). In the angular momentum representation a
tioned exchange. It is sufficient to swap the d&Jlwith A,  coherent state can be generated by a rotation of the state
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Cy Cy Ch Cs By | By FIG. 7. Construction of the mag®) (a) and
(3) (b) with use of the baker map on the sphere
(b) Fg (cf. Fig. 6). Exchange of the cellB;< B, is
denoted byRy(A) andRg(A) respectively.
A A A A
! 2 RS(A) ! 2 EE) Bé AI A/ Bi
B B B B N
1 2 2 1 Cl Cl
Ci Cs Cy C, 1 2

[j,m=j), which fulfills the smallest uncertainty relation  One can also notice that some eigenvectors of the quan-
[19,20, as|8,¢)=R(8,¢)|j,j). Now we will investigate the tum propagator are scarr¢@3—27 by classical periodic or-

so called return probability bits which is shown in Fig. 9. We conclude thus that the
5 N 5 procedure presented above indeed gives as a result quantum
|Qun(8,¢)|*=(0,0|U"6,0)|?, (19 systems which correspond to EqR) and (3).

whereU is the quantum propagator. Tt function of an
operatorA is defined as IV. AVERAGED OVERLAPS OF HUSIMI

EIGENFUNCTIONS
Qa=(0.¢|Al0,¢). (20 _ _
We here discuss how Ruelle-Pollicott resonances generate
For density operators th@ function is also called Husimi deviations from random-matrix theory as an application of
function. In a vicinity of the points 4, ¢), corresponding to tunable resonances. In R¢28] it has been shown that the
periodic points of orbits of lengtm, we may expect large classical resonances lead to semiclassical corrections of the
values of the return probability. The functiof®n(6,¢)|? localization of quantum eigenstates. In particular, it was
for systemg17) and(18) are presented in Fig. 8: observe an shown that the probability of finding strongly phase-space
agreement between maxima of the quantum return probabibverlapping quantum eigenfunctions increases if the differ-
ity (19) and the periodic points of the classical system. ence of theinquasijeigenenergies is close to the phase of a
To emphasize the fact that regular periodic points, that is¢lassical resonance which corresponds to a slow correlation
those indicated by corresponding symbolic dynamics, havelecay. On the other hand, if a pair of eigenfunctions strongly
much more influence than periodic points resulting from theoverlaps then each of them must be localizechrred in the
boundary conditions, we only showed points obtained fronsame phase-space regions.
the Markov partition—without corrections resulting from the  In contrast to the numerical results of RE28], which
topology of the system. For example, the linrel is one  were obtained from a system with a classical mixed phase
point (north polg so a periodic orbit of length two for this space we have here completely analytical classical results.
value oft coordinate is a fixpoint of the map. However, one Indeed, we do not calculate the resonances analytically, but
can see that quantum return probability for this point is mucHor our purpose the traces of the Frobenius-Perron operator

higher for even iterations than for the odd ones. are sufficient. Here we briefly review those results that are
x : X [ - o

! x f X ! @ [ -]

-1 © 1'1',_1 0 (o 2n

1 0=3 1

g 9 9 ORI R IR a @ - o

_1 X : i 1 - ‘ - FIG. 8. Classical periodic orbitgleft-hand

© r 0 © 2r

side for systems(17) (upper parnt and (18)
(lower par} versus quantum return probability

| n=2 ' ‘ . (19 for selected lengths of the orbits @A
: ; ﬂ =1/8).
t . F e
-1 2n
1 = — -
x y <o ° L
-1 10 o 2n
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FIG. 9. Periodic orbits of the classical systéeft-hand sidg¢together with Husimi functiong,, of selected eigenvectors of quantum
propagators showing corresponding scars. Upper part regards the model with positive coupling and shows that the selected eigenvector is
scarred by two orbits—period-two orbit denoted on left-hand sidexbgnd period-four orbit denoted bY. Lower part is for the system
with negative coupling and in this case the selected eigenvector is scarred along a period-four orbit of the classical system. In both cases
A=1/8.

relevant for the present discussion. N )
We focus our investigation on pure-state Husimi functions EJ dQ [(6,¢|U"6,¢)|> —— tr P". (27)
of projectors of Floquet eigenstates, i.e., the phase-space rep- N

resentation ofquasijenergy eigenstates,
Introducing the Floquet eigenstates on the left-hand side, one

Qu= Qi (4= (0. 0l DI 21 finds
Due to the normalization of a density operatorptr 1, the N
Husimi functions aré_! normalized as - n 2
o | d0lo.elutioe
=)
o= | 40Q,(0,¢)=1. (22 N 2
4m ~ 1| 40| S [(0.6lpole

As a measure for phase-space localization we introduce

the L2 norm of a Husimi function, N I
=1 2 [1Qul[Ze %0, (28)

lQullP= [ a0l(e.el 8ol @

Fourier transformation of the latter expression leads to a sum
which is the inverse participation ratio with respect to coher-of & functions weighted by.? norms,

ent states.
Another property of interest is the phase-space overlap of = gino
two Husimi functions, 2 5 E || Qix|[2 e n(i= 4
n=—o0w £T jk

i 2= | dQ 0, i 2 0, 2, 24
lQull= [ doleels)Pito.elsol. (24 3 loutso—to-p0 @

The notatiorQ;, is used, since the phase-space overlap is the

2 “ ” H— H
séame as 'I:[ESL hnsc,)iggl ge;ﬁn slg?:vtvheHouVs;rr?; ];urécetlcoonmesFor finite Hilbert-space dimensia, relation(27) might be
| ¢i)(id - pny _ .g P valid for finite times|n|<N. The truncated Fourier trans-
obvious from Schwarz’ inequality,

form leads to a sum of smoothetfunctions,
|1Qikl 12<1Qiil| | Quall- (25

Aw 4ar N
For large values of|Q;,||? both Husimi functions must be 1QulI? " (w)= N > trpn
localized in the same phase-space regions. n=-N
The introduced measureks? norm or phase-space over-
lap, prove amenable to semiclassical considerations. It mighthe stationary eigenvalue 1 will be dropped; it would lead to
be obvious that the return probability becomes a ¢ function after Fourier transformation in the limit/
N —o0. To this end we identify the stationary eigenvalue in the
N n 2 _en Husimi representation. In Ref28] it has been shown that
41-r|<0’(P|U 10.9)] SOQ-FI() (29 the stationary eigenvalue is related to thenorms of Hu-
simi functions. It turns out that the eigenvalue 1 can be
in the classical limit. Integration over phase space leads tdropped on the right-hand side of E0) if one replaces the
the trace of the Frobenius-Perron operator, Husimi functionsQ, by Q= Qi 1/N on the left-hand

inw

27

(30

N-— oo
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side, wherefdQ Q,,=0. (The prime will be dropped in the 1.025
following.) Forn=0 the integral on the left-hand side of Eq.
(27) gives the dimensioll. We replace the traces by sums of

the Ruelle-Pollicott resonancé3) and make use of the sym- 2

metry trP~"=tr P", o
=
F

5 A N-1 48 o, =
1QulI? “(0)=2——+5 2 2 \jcosnw. (31)
N N n=1 v

Note that the eigenvalue 1 is also dropped in the leading 0973 ' o - ' 2n

order term. Assuming that the density of differences of Flo-

quet eigenphases is almost constadit/27r, we finally get FIG. 10. Comparison of averaged overlagslid) with semi-

the result that the overlaps averaged over an intekvalof  classical predictions for the baker map on the spliatecoupling):

differences of Floquet eigenphases(= ¢, — ¢,) are given approximate resonancédashed and tracegdotted. Although the

by traces of the Frobenius-Perron operator, i.e., Ruelledeviation from RMT (dash-dotteflis small, semiclassical predic-

Pollicott resonances, tions coincide with the quantum result. Onlyat 7 the prediction
calculated from traces differs slightly. A single Lorentzian peak can-

A 1 22 not be observed. Since all resonances have moduli smaller than
<||Qik||2>(w): _2( 1— N+ N E (tr P"— 1)Cosnw) % the corresponding Lorentzians are widely distributed over the
N n=1 interval.
_4m 1.2 S S A" cosne As in the classical case Sec. Il D we here consider three
N2 N NS =17 ' systems: baker map on the sphere and its modifications with

positive and negative coupling. For all cases we compare our
(32 quantum results with both classical predictions, calculated
. o from approximate resonances and from the traces of the
The constant term in parentheses coincides up to the ordefobenius-Perron operator obtained with the use of periodic
N~* with the result of RMT[28], (||Qi/|*)rur=47/N(N  orpits, see Figs. 10-12. The averaged overlaps are scaled
+1). The traces of the Frobenlus—Perron operator are exXsych that the RMT average is equal to unity. Up to small
panded in sums of the Ruelle-Pollicott resonances, where §,ctyations most of the quantum results coincide with the
Fourier transform of each resonance leads to a periodigemiclassical predictions. However, not for every system the
Lorentzian distribution displaced by the phase of the resogygjity of the agreement between the semiclassical predic-
nance. Note that the resonances are real or appear as COfjgm and the quantum results is the same. Whereas the agree-
plex conjugated pairs. . ment is fine for the system with positive coupling, the mean
The averaged phase-space overlegg® might be under-  esonant peak of the Husimi overlaps approximated by peri-
stood as a scar correlation function. Due to the Schwarz)gic orbits for systent3) is higher than the peak observed in
inequality (25) the probability to find a pair of scarred eigen- the quantum results; see Fig. 12. On the other hand, the
functions becomes large if the difference of their eigenenerpagiction derived by classical resonances obtained by the
gies is close to the phase of a resonance of large modulu§eak noise approach approximate well the quantum results
i.e., close to the position of a strongly peaked Lorentzian. for | systems studied. In other words, quantum uncertainty

For numerical results we first have smoothed the sum ofcts similarly as a stochastic perturbation of the classical
weighted functions by a convolution with a sinc function gystem.

between its first zeros,

Aw w+ 7N Si _/\[( — ’)
10Ty [ ™ gy SO ]

w— 7N w—o'

x% Qi [28(0” — (i — ), (33

where we have chosel’=10. If one believes in validity of
semiclassical methods up to the Ehrenfest time, one may
identify A" as the Ehrenfest time. Anyway should be cho- 0.95; on
sen that, on the one hand, quantum fluctuations are smoothed w

out, but on the other hand, the Lorentzian peaks keep their g 11, The averaged overlaps and semiclassical predictions
widths and heights. The averaged overlaps are entered iy the positive couplingct. Fig. 10. At =0 we see a Lorentzian
dividing the latter smoothed function by the smoothed levelpeak associated with the resonance resulting from small coupling.
density, =, 8(w— (i — ¢) ). The peak heights for the three cases are nearly equal.
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1.06 (a)
Z1.08 . 1 K
o~ v 2K K+1
=
S
S
FIG. 13. (8 The sphere is partitioned intoK2 sectors.(b) A
rotation of the sphere permutes the sectors. Here the &hglein-
097, : - o cides with one sector for simplicity.
®

(2K) _ (i
FIG. 12. The averaged overlaps and semiclassical predictions A= (P (34)

for the negative couplingcf. Fig. 10. The quantum result and the This is indeed some kind of coarse graining of the

semiclassical prediction from approximate resonances coincid robenius-Perron operator analodous to the Ulam method for
while the peak corresponding to the coupling resonance is muceﬁ‘ P 9

e classical system. For a strongly chaotic dynamics the

sharper for the prediction from traces calculated with the use o : . o e
periodic orbits. This is due to the fact that the approximate reso-r,natr'x elements fluctuate aroundki/but in this simplifica-

nance in question has not reached the final resonance positidiP" these fluctuations(\é\lggl be neglected. Thus the matrix of
which is calculated analyticallicf. Sec. Il B. Quantum uncertainty the uncoupled systery™ becomes
and noise seem to have the same coarse-graining effect. WK 0 )

0o wi @9

ARK) —
V. COUPLED RANDOM MATRICES—SIMPLIFICATION 0

OF THE MODEL
wherew{Y=1/K. The eigenvalues of this matrix are easily

As has been explained in the foregoing sections, the €xsajcylated as (1,1,0. .,0), where the degeneracy of eigen-
change of probability between the two hemispheres is reygiue 1 is due to the disjoint invariant densities on each
sponsible for a resonance. We here study a simplification qflemisphere.
the system of coupled baker maps. The internal dynamics, 14 generate a nonzero resonance we introduce a coupling

i.e., the baker maps themselves, and their correspondingstween both hemispheres as a rotation of the sphe@ by
resonances are not the point of interest here. Therefore W& nd the axis (perpendicular to the plane of Fig. 13 he
replace the quantized baker map®., operator17) and gy gtem size is chosen tha(27)2K =k is integer. In this
(18] by random matrices. This simplification might be mo- reresentation the rotation becomes-fld cyclic permuta-

tivated as follows. Consider a strongly chaotic classical sysgon of the cells. Then thécoupled system is described by
tem for which all classical correlations become arbitrarily

small already after one iteration of the map. Quantizing such A(®2K):c(®2K>A52K) , (36)
a system, we expect a random-matrix-like behavior, since all
resonances should be located close to the origin and thereshere CZ¥) is a permutation matrix acting as—i=i
fore no semiclassical corrections will appear. A realization of+ k mod 2K, see Fig. 1&). A k-fold permutation of cells
such a system can be constructed by a sequence of sevesais on the block-diagonal matrix like kafold shift of the
uncoupled baker map&* (Lyapunov exponent=In 2¥) fol- row vectors, where the trace of this matrix changes for each
lowed by a coupling operator. In contrast to the coupledpermutation by—2/K as long ask is smaller thanK. The
baker maps the coupled random matri¢€ERM) are more  eigenvalues of this shifted matrix are easily calculated. Since
advantageous. The resonances are easy to calculate, as wlie matrix is still of rank 2, K—2 eigenvalues are equal to
be shown in the sequel. Moreover, we have the opportunitgero. One eigenvalue must be 1, because the matrix is double
to average over an ensemble of arbitrary many coupled rarstochastic. Thus the missing eigenvalue can be calculated
dom matrices. from the trace as\;=tr A¥)—1. Finally, the eigenvalue
For the classical counterpart of CRM we separate thdecomes\;=(2K—2k)/K—1=1-20/.
phase space into two partitions of equal area. On the sphere By varying the rotation angl® the second resonance is
we may choose the northern and southern hemispheres. dontrollable over the range—1,1]. For ® =0 the eigen-
strongly chaotic dynamics acts separately on each hemisalue 1 is degenerated, since we have two uncoupled sys-
sphere. The classical system can be described by stochasté&ns. A rotation with® = 7/2 mixes both sides uniformly,
matrices. To that end we separate the phase space Kito 2such that the resonance goes to 0. Finally, choo§lrgm
cells, where we conveniently chooBesectors of same area the hemispheres exchange completely after one map,
on each hemisphere, for instance. 1. K for the northern  whereby the resonance becomes.
and K+1,...,X for the southern hemisphere, see Fig. The quantization of such a system is easily done. The
13(a). For thelth cell we define a characteristicormalized  separated chaotic dynamics on each hemisphere correspond
density function|l) which is constant inside the cell and to a Floquet matrix which is block diagonal in the usual
vanishes outside. The matriX?X) is designed to mimic the |] ,m) basis. Due to the phase-space partition we use even
FP operatoiP in this basis dimensions of the Hilbert space, otherwise we are not able to
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1.03 results are nongeneric, i.e., they look different if one chooses
other pairs of random matrices.

VI. CONCLUDING REMARKS

We investigate classical systems whose Frobenius-Perron
operators have resonances with large moduli. Such long-
lived excitations have a strong impact on the corresponding
quantum dynamics. In particular, they constitute a scarring

995 - g mechanism for quantum eigenfunctions.
o In order to detect resonances we employed the small-

FIG. 14. Comparison of averaged overlaps with the semiclassi2dditive-noise approach. The noise was designed such as to
cal prediction for CRM with positive coupling. For the quantum €nsure a finite-dimensional representation of the Frobenius-
results(solid) we find good agreement with the semiclassical pre-Perron operator which has a unique discrete spectrum.
diction (dotted. Uniform spectrum predicted by RMT is denoted by ~ Our models are chosen such that the classical dynamics is
a dashed line. well understood—their topological and metric entropies are

both equal to In 2. For all maps analyzed we provide Markov
assign the stat¢j,m=0) to one of the hemispheres. The partitions, as well as the complete sets of periodic orbits.
block matrices are chosen as random unitary matrices due #4aking use of them we could evaluate the classical
the strongly chaotic dynamics. The coupling becomes a roCvitanovicEckhardt trace formula for the Frobenius-Perron

tation matrixRx(®)=e*i@3x, operatqr_[_29] an_d discuss its relation to the quantum return
probabilities with respect to coherent states. That return

U, O probability naturally leads to an intimate relation between
U=Rx(®)( ) (37 long-lived classical resonances and quantum scars. In fact,

0 U, system specific quantum localization properties not ex-

lained by the standard ensembles of random matrices turn

andU, , are independent random unitary matrices distributecgut interpretable statistically on the basis of classical Ruelle-
according to the Haar measure 0OifN/2). Pollicott resonances.

We choose two different coupling anglés=0.5 and®
=7+0.5, where the resonances become=*(1—1/7),
respectively. For each case the Hilbert space dimension is ACKNOWLEDGMENTS
N=200. Due to the semiclassical prediction the averaged

S We would like to thank Prot Pakski for many fruitful
overlaps distribute as

discussions. Financial support by the Polish State Committee
" for Scientific ResearctKBN) Grant No. 5 PO3B 018 21 and
1 the Sonderforschungsbereich 237 der Deutschen Forschungs-
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As in the case of the coupled baker maps we use the smooth-,ppENDIX A: EXEMPLARY TRANSITION MATRICES
ing with a sinc function of form sin(10)/w. Figure 14

shows the averaged overlag§Qi||?)(w), for the positive We present here the transition matrices defined in Sec.
resonance\ ., while in Fig. 15 we see the results for the Il B for systems(2) and (3) for coupling parameterA
negative resonancde_ . For both cases we find a good agree-=1/8. Assuming the lexicographical ordering of cefthat
ment with the semiclassical prediction. The small fluctua-is, A;,A,,B1,B;, .. .), thetransition matrixT * for the sys-
tions (much smaller than the Lorentz peaks the quantum  tem (2) with positive coupling is equal to

1.03

0O 40 4 00O
4 0 4 0 0 0 0 O
B 0O 00 08 0 0O
%;; T+ :E 0O 0 0OOO0O 8 0 O (A1)
= 8/0 0 0 0O O O 8 0|
0O 0 0O0OO O 0 8
039, - ] 1 01 0 2 0 40
® 01 010 2 O
FIG. 15. Averaged overlaps of CRM and semiclassical predic-
tion for negative couplingcf. Fig. 14. while for the negative couplingB) it reads
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N I P r—r'=+2r.
1/"41\\\\ 7 Ay
T_ L . . T The action of these maps is presented in Fig. 16. From these
T % A equations it is clear that expressidr) is not well defined at
— N the poles. In order to regularize it we replace th&unction

7 with a two-dimensional Gaussian of width, compute the
integral, and later go to the limit— 0. To this end we need

I =~ square of the distance between the initial point anchits
S T N\ iteration,
Cl \ C] \
T ! 1 . s )
T - o A d2(r,0)=r1+2"F2(y2)" cog1-2"Me], (B3)
N o 4

where the upper and the lower sign is for the north and the

FIG. 16. The evolution of the phase space around the north ang0uth pole, respectively. Putting it all together we get that the
south poles governed by mafi1) and(B2)—top and bottom row, ~contribution to the trace oP" coming from the pole is

respectively.

1 = d?(r, )

0 402 010 lim—— d(pJ’ drrexp — . (B9
vo02mal) —m 0 20°

4 02 01010

08000000 Performing first the radial integral, we get

T_180000000 A2
“8lo oo s o000 o ¥ 1F 1

— d , B5

00800000 2] n $14 275 2(\2)" cog1-2 Mg (59

0 000 4040

0 00O 0O 40 which does not depend on the width Hence the limito

—0 is automatically obtained. IntegréB5) is elementary
It is straightforward to calculate their eigenvalues, and inand one gets the following result for the contribution of the
particular, one gets that the second largest eigenvalue in thgoles:
case of positive couplingAl) is equal tox, =a/6+1/a

~(0.8846 Wherea=3\/27+3 57, while in the case of nega- 2 2" (\/E)”I 1+ T
tive coupling(A2) one has\, =—\, . bs(n)=— (Zn_l)z“mta (\/E)nil‘adl_z )5
(B6)

APPENDIX B: CONTRIBUTION OF POLES

TO THE TRACES OF FP OPERATOR where the upper and the lower sign is for the north and the

In order to evaluate the contribution to the trace formulaSOUth pole, respectively. If one compares the above values
(10) of the poles we first consider stereographic projectioné""t.h the contr|but|o_ns of unstable and inverse unstable fix-
of their neighborhoods. In case of the north pole we usd0ints, then one finds that the south pole can be nearly
stereographic projection from the south pole and vice Versgea_\ted like thg unstable fixpoint while the north_ pole differs
so that in each case the pole corresponds to the origin of th bit from the inverse unstable one. To get explicitly expres-
plane. Next we introduce coordinate system such that th&lon (10) for the traces, one has to count the number of
discontinuity line of both points corresponds to the negativePeriodic points using the connectivity matfix For instance,
x axis. Using polar coordinates wit e[ — 7] we can for map(3) we obtain
easily express the action of the mdpe behavior around the

poles of the “positive” and “negative” version is the sapne tr(T )" —4—2(—1)"
and the mapping around the north pole is given by tr P'= PP +b,(n)+b_(n), (B7)
+ —h_
o— @' =@l2+ T, (B1)
where we used Ed6) and took into account that the Markov
r—r'=42r, partition does not feel the topology of the systéime lines
t=cos#==1 are single points—pole¢sand also the period
while for the south pole it reads two orbit originating frome=7 and t=—1/3 is counted
twice (see Sec. Il B and also left hand side of Fig. 8nalo-
o— @' =0l2, (B2) gously, for map(2) we have
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tr(TH)"—3—(—1)"
2042712

tr P"=

+b,(n)+b_(n). (B8

In case of the standard baker map on the sph&rel1/2 case
of maps (2) and (3)] we are able to find the analytical

PHYSICAL REVIEW E 68, 056201 (2003

expression for the number of periodic points so the traces of
FP operator are given by

2M—3—(—1)"
20427 N—2

tr P"= +b,.(n)+b_(n). (B9)
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