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Quantization of classical maps with tunable Ruelle-Pollicott resonances
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We investigate the correspondence between the decay of correlation in classical systems, governed by
Ruelle-Pollicott resonances, and the properties of the corresponding quantum systems. For this purpose we
construct classical dynamics with controllable resonances together with their quantum counterparts. As an
application of such tunable resonances we reveal the role of Ruelle-Pollicott resonances for the localization
properties of quantum energy eigenstates.
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I. INTRODUCTION

The quantum-classical correspondence of non-integr
systems has been studied for a long time. In recent years
role of classical Ruelle-Pollicott resonances for the dynam
of the quantum counterparts has become a point of inte
@1–4#. The classical time evolution can be described in
Liouville picture as the propagation of the phase-space d
sity r(x,t), where x denotes a point in phase space. T
corresponding propagatorP is called Frobenius-Perron~FP!
operator and can be defined by

r~x,t !5E dx8 d„x2Ft~x8!…r~x8,0![Ptr~x,0!, ~1!

where F is the flow in the phase space generated by
dynamicsx(t)5Ft

„x(0)…. The poles of the resolvent of thi
operator are the Ruelle-Pollicott resonances@5,6#. It turns out
that these resonances correspond to decay rates of cla
correlation functions describing the relaxation process i
chaotic system@7#. The presence of the Ruelle-Pollicott res
nances related to slow decay of correlations can explain n
universal behavior of the corresponding quantum syst
i.e., deviations from predictions of the random-matrix theo
~RMT! analyzed, e.g., in Ref.@8#.

In order to reveal such effects of resonances we first c
struct a classical system with an isolated, controllable re
nance which can be computed analytically. We focus
considerations on dynamical systems with compact ph
spaces, in particular the unit sphere. Periodic driving
stroys integrability, where the stroboscopic description
such a dynamics is given by a Hamiltonian map. For t
case the Ruelle-Pollicott resonances are located inside
unit circle of the complex plane, while decay rates are rela
to the moduli of resonances. For the quantum counterpar
stroboscopic description of the propagation of wave fu
tions is given by a unitary Floquet operator. The eigenpha
of that operator are also called quasieigenenergies.

Analytical calculations of Ruelle-Pollicott resonances a
feasible for purely hyperbolic systems@9,10#. We introduce
dynamics that are not Hamiltonian~continuous! but still area
1063-651X/2003/68~5!/056201~12!/$20.00 68 0562
le
he
s
st
e
n-

e

ical
a

n-
,

y

n-
o-
r

se
-
f
s
he
d

he
-
es

e

preserving, coupled baker maps on the sphere. These m
systems are introduced in Sec. II, where we also show h
to find their periodic orbits, approximate resonances, and
culate the traces of the Frobenius-Perron operators assoc
with them. Construction of the corresponding quantu
propagators together with the comparison of quantum
classical dynamics is presented in Sec. III. In Sec. IV
investigate how Ruelle-Pollicott resonances give rise to
deviations from the random-matrix theory. Eventually,
Sec. V we present the model of coupled random matri
which can be considered as a simplification of the syste
introduced in Sec. II.

II. COUPLED BAKER MAPS

We are interested in classical dynamical systems
which there exists a Ruelle-Pollicott resonance with la
modulus. Such a resonance governs the long-time beha
of the system and is easy to detect.

The idea standing behind our model systems is rat
simple. Suppose our system is initially composed out of t
disconnected subsystems. An arbitrary initial density pla
in one of those subsystems will not spread into the ot
subsystem. The system as a whole will thus have two inv
ant ~stationary! densities, one for each subsystem~and the
linear combinations thereof!. This fact will be reflected in the
spectrum of the Frobenius-Perron operator as a doubly
generated eigenvaluel15l251. However, if we introduce
a small coupling between both subsystems, the density f
one subsystem will slowly leak into the other one and ev
tually reach the invariant density of the entire system. A
result of the coupling, the degeneracy of the spectrum will
lifted. The largest eigenvaluel151 corresponds to the
unique invariant density of the entire system, while the ot
eigenvaluel2 with ul2u512e,1 corresponds to a meta
stable state. The smaller the spectral gape, the longer the
decay time of the state.

For the internal dynamics of both subsystems we cho
the standard baker map acting on a unit square—a w
known model of chaotic dynamics@11#. One possible way to
introduce the coupling is described by
©2003 The American Physical Society01-1
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FIG. 1. Map on the unit square defined by E
~2! for z53/4.
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~y8,x8!5F~y,x!55
~2y21,x/211/2!, y>z,x<1/2

~2y21,x/211/4!, yP@1/2,z!,x<1/2

~2y,x/2!, y,1/2,x<1/2

~2y21,x/2!, y>z,x.1/2

~2y21,x/211/4!, yP@1/2,z!,x.1/2

~2y,x/211/2!, y,1/2,x.1/2,
~2!

whose action is depicted in Fig. 1. In the limiting casez
51 the partsA1 andA2 vanish and there exist two separat
subsystems, with indices 1 and 2~each of them equivalent to
the standard baker map!. For z,1 both subsystems ar
coupled together. To describe the strength of the coupling
introduce a parameterD512z which varies from 0 to 1/2.

A. The system with a negative coupling

We now present a slightly modified version of map~2!
which results in the resonance of a large modulus with ne
tive sign. Thus we call both versions of the model as ‘‘po
tive’’ and ‘‘negative’’ coupling depending on the sign of th
resonance.

We start again with two uncoupled baker maps. In ad
tion to their internal dynamics, we assume that in every
eration of the map both subsystems exchange their positi
The FP operator corresponding to such a system will t
have two eigenvalues of unit modulus:l1511 and l2
521. Any small coupling of both subsystems will cause t
density placed in one subsystem to slowly leak into the ot
one, so the entire system will possess a resonance of
modulus and its negative sign will reflect oscillatory natu
of the system.

The version of the coupling that we have chosen is p
sented in Fig. 2 and is defined by

~y8,x8!5F~y,x!

55
~2y21,x/211/2!, y>1/2,x<1/2

~2y,x/213/4!, yP@z,1/2!,x<1/2

~2y,x/2!, y,z,x<1/2

~2y21,x/2!, y>1/2,x.1/2

~2y,x/221/4!, yP@z,1/2!,x.1/2

~2y,x/211/2!, y,z,x.1/2.

~3!
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Accordingly for this system the coupling strength parame
is given byD5z. The full coupling (D51/2) limits of sys-
tems~2! and ~3! coincide and correspond to the baker m
on the sphere defined in Ref.@12#.

Our ultimate goal is to construct a quantum system co
sponding to the classical system with a large resonance
to investigate the influence of the classical resonance on
properties of the quantum system. For this purpose we m
use of periodic orbits of the classical system and the sp
trum of the Frobenius-Perron operator corresponding to
classical system—which we will approximate by introdu
tion of a stochastic perturbation into the system. Hence
following two sections are devoted to these subjects.

B. Periodic orbits of the classical system

For the determination of the periodic orbits of the syste
we will use the Markov partition. For any dynamical syste
F it is defined as a such partitionC of the phase space intoK
cells that the borders of each cell are composed of segm
of stable and unstable manifolds of the system. Additiona
this partition has to fulfill

F~]sC!,]sC, ~4!

F21~]uC!,]uC, ~5!

so the image of the stable part of the partition boundary]sC
is contained in]sC and the unstable part of the boundary]uC
contains its preimage@7#. Such a partition generates a sym
bolic dynamics with aK-letter alphabet which is a topologi
cal Markov chain. In the following we will concentrate o
system~2!, since most of the results below can be transla
directly to system~3!, and we will only emphasize importan
differences.

For system~2! we are able to find a Markov partition fo
several values of the coupling parameterD. For example, for
D51/2k with naturalk this partition is defined by a set o
horizontal linesyi5121/2i wherei 51, . . . ,k and a vertical
line atx51/2. It is easy to verify that under the action of E
~2! each coordinateyi is mapped toyi 21 and eventually
tends toy151/2 which is mapped@30# to y50.

Basing on this partition we can construct a transition m
trix T with entriesTi j equal to probabilities that the syste
FIG. 2. Action of map~3! for z51/4.
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passes from the celli to the cell j. For simple piecewise
linear maps an agreement between the resonance of the
responding Frobenius-Perron operator with the second l
est modulus and the eigenvalue of this matrix was obser
@9#. The dimension of the transition matrix for system~2!
with D51/2k grows linearly withk according toK5dimT
52(k11), and one can easily obtain its eigenvalues.
instance, fork53 (D51/8) the second largest eigenvalue
equall2

1'20.8846, while in case of negative coupling~3!
l2

252l2
1—see Appendix A.

The transition matrixT for the system~2! enables us to
specify periodic orbits of the system. The number of perio
points is given directly by

u$~x,y!:~x,y!5Fn~x,y!%u5tr Tn, ~6!

where we introduced the connectivity matrixT ~sometimes
called topological transition matrix@7#! defined as a transi
tion matrix with all nonzero entries replaced by 1,

Ti j 5H 1 if T i j .0

0 otherwise.
~7!

It is worth to note that formula~6! is valid only if none of the
periodic orbit crosses the boundary of the partition
otherwise we have to take into account that a given symb
sequence may not define a point in the phase space uniq
so it might happen that one orbit is counted more than on
One can verify that there is no such problem for system~2!,
but this is not the case for system~3!. Periodic sequence
v15B1A2 andv25B2A1 ~see Fig. 2! correspond to the or
bits starting from the same initial pointx51/2, y51/3 which
belongs to the partition line. This fact needs to be taken i
account during calculations of the traces of the FP opera

Note also that systems~2! and ~3!, originally defined on
the square~torus! may also represent dynamics on t
sphere, wherey→cosu andx→w. In this case the entire line
y50 has to be identified with the south pole~and line y
51 with the north pole, respectively!, so the number of pe
riodic orbits in both systems may differ.

C. Approximation of the Frobenius-Perron spectrum

We are not able to find analytically resonances of syste
~2! and ~3! ~apart from the second largest which we obta
from the transition matrix!. To approximate them we follow
an approach developed in Refs.@13–17# and introduce a sto
chastic perturbation into the system. This allows us to rep
sent the Frobenius-Perron operator corresponding to the
tem with noise as a finite dimensional matrix.

In Sec. III we define quantum propagators correspond
to systems~2! and ~3!. In order to use well known SU~2!
coherent states@18–21# we convert appropriate definitions o
the classical systems into the unit sphere by applying
Mercator projection. More formally, we replacex with w
52px and y with t5cosu52y21, wherew and u are the

usual spherical coordinates. The parameterDP(0,1
2 ) defined

previously plays the same role of the coupling constant.
cordingly we should approximate resonances for the class
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system defined on the sphere. A possible choice of the p
ability density of the stochastic perturbation which tran
forms a pointV5(u,w) on the sphere intoV85(u8,w8) is

PM~V8,V!5
M11

4p S 11cosJ

2 D M

5
M11

4p (
k,l 50

M S M

k D S M

l D
3S sink1 l

u

2
cos2M2(k1 l )

u

2
ei ( l 2k)wD

3S sink1 l
u8

2
cos2M2(k1 l )

u8

2
e2 i ( l 2k)w8D , ~8!

whereM is an arbitrary natural number. HereJ is the angle
formed by two vectors pointing toward the pointsV andV8
on the sphere. As discussed in Refs.@13,16# the matrix rep-
resentation of the Frobenius-Perron operator for system w
such a noise is finite dimensional—the last equation in
~8! helps to identify the basis functions of the matrix repr
sentation. For the probability distribution~8! the dimension
of the matrix is (M11)2 and grows to infinity in the deter
ministic limit M→`, for which P`(V8,V)5d(V2V8)
with respect to the uniform measure on the sphere,dV
5sinudu dw. However, for any finiteM one obtains a finite
representation of the FP operator and may diagonalize it
merically @31#. In this way we obtain the exact spectrum f
the system with noise and by decreasing the noise ampli
we can approximate the resonances of the deterministic
tem. Figure 3 presents the dependence of the modulus o
second largest eigenvaluel2 of systems~2! and~3! subjected
to additive noise~8! on the noise parameterM @32#. The
deterministic limit—represented in Fig. 3 as a dash
line—is the same for both systems and is obtained from
transition matrix defined in the preceding section. The m
striking observation is that although the deterministic va
of ul2u for both systems is the same, the approximations
l2 for a given value of the noise parameterM differ. This can

FIG. 3. Dependence of the modulus of the second largest ei
value of the FP operator for the stochastically perturbed coup
baker maps on the sphere on the noise parameterM. Values for the
system~2! and ~3! are represented bys and *, respectively~in
both casesD51/8). The dashed line represents the determinis
limit.
1-3
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FIG. 4. Second iteration of systems~2! ~left!
and ~3! ~right!.
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be understood with the help of Fig. 4, where we showed
result of the second iteration of the corresponding syste
The total length of the boundary between subsystems 1 a
for the negative coupling~right plot! is one and half times
larger than for the positive coupling. Thus in the case of
negative coupling it is more likely that points will mov
from one subsystem to the other one under the action of
stochastic perturbation. The overall decay rate in the p
ence of the noise is thus faster than in the case of the pos
coupling, which is reflected in the spectrum as a sma
modulus of the subleading eigenvaluel2.

D. Traces of the Frobenius-Perron operator

For the semiclassical analysis we will need the traces
the Frobenius-Perron operatorP associated with the classica
system. Approximation of the traces with the help of stoch
tic perturbation is straightforward, since we obtain eigenv
uesl i of the FP operator for the noisy system and we c
calculate the traces directly from the definition

tr Pn5(
i

l i
n . ~9!

In order to calculate the traces with the use of periodic or
we will use the integral representation of the FP operator~1!.
05620
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To obtain the expression for the traces it is sufficient to id
tify initial and final points in this expression, that is,

tr Pn5E dVd„V2Fn~V!…

5 (
V i :V i5Fn(V i )

1

udet„12Jn~V i !…u
, ~10!

whereJn(V i) denotes the Jacobian matrix of the mappingFn

evaluated in pointV i and we make use of the properties
the d function in the last equality. The calculation of th
denominator in Eq.~10! is easy, since our systems are pure
hyperbolic with constant stretching and squeezing by a fa
of 2. Thus the contribution of each fixpoint to the trace ofPn

is equal to@2n122n22#21. The only periodic points tha
need special attention are the south and the north p
since—due to the discontinuities—expression~10! is not
well defined in these points. In order to calculate the con
bution from these points we ‘‘regularized’’ the integr
~10!—see Appendix B. Having done that we can combi
the contribution of the periodic points with their numbe
calculated from Eq.~6!. The traces, Fig. 5, calculated from
the approximate spectrum and periodic orbits are represe
by solid and dashed lines, respectively. These numerica
-

s
e
e
i-
d

FIG. 5. Traces of the FP opera
tor: ~a! positive coupling~2! with
D51/8, ~b! negative coupling~3!
(D51/8), and ~c! full coupling
corresponding to system~2! with
D51/2 @or to Eq.~3! also withD
51/2]. Solid lines represent trace
calculated from the approximat
spectrum of the FP operator, whil
the traces obtained from the per
odic orbits are plotted with dashe
lines.
1-4
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FIG. 6. Baker map on the sphere in Mercat
projection (t5cosu,w). This map is the full cou-
pling limit (D51/2) of systems~2! and ~3!.
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sults demonstrate good agreement between two diffe
methods of computing the traces of the FP operator. Disc
ancies visible in Figs. 5~b! and 5~c! are due to the fact tha
for system~3! the effective coupling is stronger as discuss
at the end of Sec. II C.

III. QUANTUM PROPAGATOR

In the construction of the quantum propagator cor
sponding to systems~2! and ~3! we rely on the results pre
sented in Ref.@12# in which the quantum baker map wa
defined on the sphere. The corresponding classical syste
obtained from Eqs.~2! and ~3! in the full coupling limit D
51/2 and its action is visualized in Fig. 6. The constructi
of the quantum system is based on the matrix representa
of the rotation around they axis by an angle ofp/2,

Rm8,m5^ j ,mue2 ip/2Ĵyu j ,m8&, ~11!

where Ĵi is the i th component of the angular momentu
operatorĴ and u j ,m& is an eigenvector of theĴz operator,
Ĵzu j ,m&5mu j ,m& with m52 j , . . . ,j . In the following we
choose half-integer spin valuesj, so the size of the rotation
matrix N52 j 11 is even. The resulting quantum propaga
is defined as@12#

ÛB5R21FR8 0

0 R9
G , ~12!

whereR8 andR9 are matrices created by taking halves~re-
spectively, upper and lower! of every second column of th
rescaled Wigner rotation matrixR,

Rk,m8 5A2 Rk,2m2 j , k,m5
1

2
, . . . ,j , ~13!

Rk,m9 5A2 Rk,2m1 j , k,m52 j , . . . ,2
1

2
. ~14!

The construction~12! is similar to the original quantum ma
on the torus proposed by Balazs and Voros@22#: instead of
the Fourier matrix we use the Wigner rotation matrixR.

Now it is crucial to note that if we additionally exchang
the partsA18 andA28 in Fig. 6, we obtain the uncoupled ve
sion of map~2! for D50. The same happens if we exchan
the partsC18 andC28—we obtain then map~3! for D50. On
the other hand, a partial exchange of these regions will re
in maps withD.0.

The only question left is how to modify the definition o
the quantum propagator in order to obtain the above m
tioned exchange. It is sufficient to swap the cellA1 with A2
05620
nt
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d
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is

on

r
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n-

in Fig. 6 ~or C1 with C2), or their parts, before applying th
operatorÛB from Eq. ~12!. Such an exchange may be a
complished by a rotation of the part of northern or south
hemisphere@for maps~2! and~3!, respectively# around thez
axis by anglep. This procedure is presented in Fig. 7 whe
this partial rotation is denoted byRN(D) andRS(D). Quan-
tum operators corresponding to these rotations have sim
representation in theu j ,m& basis, since they are just mult
plication of the vector of coefficients by a phase fac
e2 imp. In both cases the matrix representation is diago
and for the ‘‘positive’’ coupling~2! the diagonal elements ar
equal

R̂N~D!k,k5H 1 for k,ND

e2 i ( j 2k11)p for kP~ND,N/2!

1 for k.N/2,

~15!

while for ‘‘negative’’ coupling ~3! the appropriate rotation
operator has the following representation

R̂S~D!k,k5H 1 for k,N/2

e2 i ( j 2k11)p for kP„N/2,N~12D!…

1 for k.N~12D!,
~16!

whereN52 j 11 is the dimension of the Hilbert space~we
confine ourself to such values ofN andD thatND is integer!.
Using these operators we define unitary quantum maps
responding to classical systems~2! and ~3!, respectively,

ÛN5ÛBR̂N~D!, ~17!

ÛS5ÛBR̂S~D!, ~18!

with ÛB defined by Eq.~12!.

Comparison of classical and quantum dynamics

In order to illustrate correctness of the proposed constr
tion of the quantum propagators, we make use of perio
orbits of the classical systems. Suppose that for initial c
ditions for quantum dynamics we choose a wave funct
localized around some periodic point of the classical syst
After the time equal to the period of the classical orbit t
probability of measuring the system near the initial point
the phase space should be large. More precisely, for the
tial state we choose the SU~2! coherent stateuu,w& localized
in point (u,w). In the angular momentum representation
coherent state can be generated by a rotation of the s
1-5
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FIG. 7. Construction of the maps~2! ~a! and
~3! ~b! with use of the baker map on the sphe
FB ~cf. Fig. 6!. Exchange of the cellsB1↔B2 is
denoted byRN(D) andRS(D) respectively.
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u j ,m5 j &, which fulfills the smallest uncertainty relatio
@19,20#, asuu,w&5R(u,w)u j , j &. Now we will investigate the
so called return probability

uQUn~u,w!u25u^u,wuUnuu,w&u2, ~19!

whereU is the quantum propagator. TheQ function of an
operatorA is defined as

QA5^u,wuAuu,w&. ~20!

For density operators theQ function is also called Husim
function. In a vicinity of the points (u,w), corresponding to
periodic points of orbits of lengthn, we may expect large
values of the return probability. The functionsuQUn(u,w)u2

for systems~17! and~18! are presented in Fig. 8: observe a
agreement between maxima of the quantum return proba
ity ~19! and the periodic points of the classical system.

To emphasize the fact that regular periodic points, tha
those indicated by corresponding symbolic dynamics, h
much more influence than periodic points resulting from
boundary conditions, we only showed points obtained fr
the Markov partition—without corrections resulting from th
topology of the system. For example, the linet51 is one
point ~north pole! so a periodic orbit of length two for this
value of t coordinate is a fixpoint of the map. However, o
can see that quantum return probability for this point is mu
higher for even iterations than for the odd ones.
05620
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One can also notice that some eigenvectors of the qu
tum propagator are scarred@23–27# by classical periodic or-
bits which is shown in Fig. 9. We conclude thus that t
procedure presented above indeed gives as a result qua
systems which correspond to Eqs.~2! and ~3!.

IV. AVERAGED OVERLAPS OF HUSIMI
EIGENFUNCTIONS

We here discuss how Ruelle-Pollicott resonances gene
deviations from random-matrix theory as an application
tunable resonances. In Ref.@28# it has been shown that th
classical resonances lead to semiclassical corrections o
localization of quantum eigenstates. In particular, it w
shown that the probability of finding strongly phase-spa
overlapping quantum eigenfunctions increases if the diff
ence of their~quasi-!eigenenergies is close to the phase o
classical resonance which corresponds to a slow correla
decay. On the other hand, if a pair of eigenfunctions stron
overlaps then each of them must be localized~scarred! in the
same phase-space regions.

In contrast to the numerical results of Ref.@28#, which
were obtained from a system with a classical mixed ph
space we have here completely analytical classical res
Indeed, we do not calculate the resonances analytically,
for our purpose the traces of the Frobenius-Perron oper
are sufficient. Here we briefly review those results that
y

FIG. 8. Classical periodic orbits~left-hand
side! for systems ~17! ~upper part! and ~18!
~lower part! versus quantum return probabilit
~19! for selected lengthsn of the orbits (D
51/8).
1-6
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FIG. 9. Periodic orbits of the classical system~left-hand side! together with Husimi functionsQuc&^cu of selected eigenvectors of quantu
propagators showing corresponding scars. Upper part regards the model with positive coupling and shows that the selected eig
scarred by two orbits—period-two orbit denoted on left-hand side by3 and period-four orbit denoted bys. Lower part is for the system
with negative coupling and in this case the selected eigenvector is scarred along a period-four orbit of the classical system. In b
D51/8.
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relevant for the present discussion.
We focus our investigation on pure-state Husimi functio

of projectors of Floquet eigenstates, i.e., the phase-space
resentation of~quasi-!energy eigenstates,

Qkk[Qufk&^fku5u^u,wufk&u2. ~21!

Due to the normalization of a density operator, trr51, the
Husimi functions areL1 normalized as

N

4pE dVQr~u,w!51. ~22!

As a measure for phase-space localization we introd
the L2 norm of a Husimi function,

uuQkkuu25E dVu^u,wufk&u4, ~23!

which is the inverse participation ratio with respect to coh
ent states.

Another property of interest is the phase-space overla
two Husimi functions,

uuQikuu25E dVu^u,wuf i&u2u^u,wufk&u2. ~24!

The notationQik is used, since the phase-space overlap is
same as theL2 norm of the ‘‘skew’’ Husimi function
Quf i &^fku . The physical meaning of the overlaps becom
obvious from Schwarz’ inequality,

uuQikuu2<uuQii uu uuQkkuu. ~25!

For large values ofuuQikuu2 both Husimi functions must be
localized in the same phase-space regions.

The introduced measures,L2 norm or phase-space ove
lap, prove amenable to semiclassical considerations. It m
be obvious that the return probability becomes

N

4p
u^u,wuUnuu,w&u2 ——→

N→`

d„V2Fn~V!… ~26!

in the classical limit. Integration over phase space lead
the trace of the Frobenius-Perron operator,
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N

4pE dV u^u,wuUnuu,w&u2 ——→
N→`

tr Pn. ~27!

Introducing the Floquet eigenstates on the left-hand side,
finds

N

4pE dVu^u,wuUnuu,w&u2

5
N

4pE dVU(
k

u^u,wufk&u2e2 infkU2

5
N

4p (
ik

uuQikuu2e2 in(f i2fk). ~28!

Fourier transformation of the latter expression leads to a s
of d functions weighted byL2 norms,

(
n52`

`
einv

2p (
ik

uuQikuu2 e2 in(f i2fk)

5(
ik

uuQikuu2d„v2~f i2fk!…. ~29!

For finite Hilbert-space dimensionN, relation~27! might be
valid for finite times unu<N. The truncated Fourier trans
form leads to a sum of smoothedd functions,

uuQikuu2
Dv

~v!5
4p

N (
n52N

N
tr Pn

einv

2p
. ~30!

The stationary eigenvalue 1 will be dropped; it would lead
a d function after Fourier transformation in the limitN
→`. To this end we identify the stationary eigenvalue in t
Husimi representation. In Ref.@28# it has been shown tha
the stationary eigenvalue is related to theL1 norms of Hu-
simi functions. It turns out that the eigenvalue 1 can
dropped on the right-hand side of Eq.~30! if one replaces the
Husimi functionsQkk by Qkk8 5Qkk21/N on the left-hand
1-7
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side, where*dV Qkk8 50. ~The prime will be dropped in the
following.! For n50 the integral on the left-hand side of E
~27! gives the dimensionN. We replace the traces by sums
the Ruelle-Pollicott resonances~9! and make use of the sym
metry tr P2n5tr Pn,

uuQikuu2
Dv

~v!52
N21

N
1

4

N (
n51

N

(
n

ln
ncosnv. ~31!

Note that the eigenvalue 1 is also dropped in the lead
order term. Assuming that the density of differences of F
quet eigenphases is almost constant,N2/2p, we finally get
the result that the overlaps averaged over an intervalDv of
differences of Floquet eigenphases (v ik5f i2fk) are given
by traces of the Frobenius-Perron operator, i.e., Rue
Pollicott resonances,

^uuQikuu2&~v!5
4p

N2 S 12
1

N
1

2

N (
n51

`

~ tr Pn21!cosnv D
5

4p

N2 S 12
1

N
1

2

N (
n

(
n51

`

ln
n cosnv D .

~32!

The constant term in parentheses coincides up to the o
N22 with the result of RMT@28#, ^uuQikuu2&RMT54p/N(N
11). The traces of the Frobenius-Perron operator are
panded in sums of the Ruelle-Pollicott resonances, whe
Fourier transform of each resonance leads to a perio
Lorentzian distribution displaced by the phase of the re
nance. Note that the resonances are real or appear as
plex conjugated pairs.

The averaged phase-space overlaps~32! might be under-
stood as a scar correlation function. Due to the Schw
inequality~25! the probability to find a pair of scarred eige
functions becomes large if the difference of their eigenen
gies is close to the phase of a resonance of large modu
i.e., close to the position of a strongly peaked Lorentzian

For numerical results we first have smoothed the sum
weightedd functions by a convolution with a sinc functio
between its first zeros,

uuQikuu2
Dv

~v!}E
v2 p/N

v1 p/N
dv8

sin@N~v2v8!#

v2v8

3(
ik

uuQikuu2d„v82~f i2fk!…, ~33!

where we have chosenN510. If one believes in validity of
semiclassical methods up to the Ehrenfest time, one m
identify N as the Ehrenfest time. Anyway,N should be cho-
sen that, on the one hand, quantum fluctuations are smoo
out, but on the other hand, the Lorentzian peaks keep t
widths and heights. The averaged overlaps are entere
dividing the latter smoothed function by the smoothed le
density,( ikd„v2(f i2fk)…

Dv.
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As in the classical case Sec. II D we here consider th
systems: baker map on the sphere and its modifications
positive and negative coupling. For all cases we compare
quantum results with both classical predictions, calcula
from approximate resonances and from the traces of
Frobenius-Perron operator obtained with the use of perio
orbits, see Figs. 10–12. The averaged overlaps are sc
such that the RMT average is equal to unity. Up to sm
fluctuations most of the quantum results coincide with
semiclassical predictions. However, not for every system
quality of the agreement between the semiclassical pre
tion and the quantum results is the same. Whereas the ag
ment is fine for the system with positive coupling, the me
resonant peak of the Husimi overlaps approximated by p
odic orbits for system~3! is higher than the peak observed
the quantum results; see Fig. 12. On the other hand,
prediction derived by classical resonances obtained by
weak noise approach approximate well the quantum res
for all systems studied. In other words, quantum uncerta
acts similarly as a stochastic perturbation of the class
system.

FIG. 10. Comparison of averaged overlaps~solid! with semi-
classical predictions for the baker map on the sphere~full coupling!:
approximate resonances~dashed! and traces~dotted!. Although the
deviation from RMT~dash-dotted! is small, semiclassical predic
tions coincide with the quantum result. Only atv5p the prediction
calculated from traces differs slightly. A single Lorentzian peak c
not be observed. Since all resonances have moduli smaller
1
2 , the corresponding Lorentzians are widely distributed over
interval.

FIG. 11. The averaged overlaps and semiclassical predict
for the positive coupling~cf. Fig. 10!. At v50 we see a Lorentzian
peak associated with the resonance resulting from small coup
The peak heights for the three cases are nearly equal.
1-8
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V. COUPLED RANDOM MATRICES—SIMPLIFICATION
OF THE MODEL

As has been explained in the foregoing sections, the
change of probability between the two hemispheres is
sponsible for a resonance. We here study a simplification
the system of coupled baker maps. The internal dynam
i.e., the baker maps themselves, and their correspon
resonances are not the point of interest here. Therefore
replace the quantized baker maps@i.e., operators~17! and
~18!# by random matrices. This simplification might be m
tivated as follows. Consider a strongly chaotic classical s
tem for which all classical correlations become arbitrar
small already after one iteration of the map. Quantizing s
a system, we expect a random-matrix-like behavior, since
resonances should be located close to the origin and th
fore no semiclassical corrections will appear. A realization
such a system can be constructed by a sequence of se
uncoupled baker mapsB̃k ~Lyapunov exponent' ln 2k) fol-
lowed by a coupling operator. In contrast to the coup
baker maps the coupled random matrices~CRM! are more
advantageous. The resonances are easy to calculate, a
be shown in the sequel. Moreover, we have the opportu
to average over an ensemble of arbitrary many coupled
dom matrices.

For the classical counterpart of CRM we separate
phase space into two partitions of equal area. On the sp
we may choose the northern and southern hemisphere
strongly chaotic dynamics acts separately on each he
sphere. The classical system can be described by stoch
matrices. To that end we separate the phase space intoK
cells, where we conveniently chooseK sectors of same are
on each hemisphere, for instance 1, . . . ,K for the northern
and K11, . . . ,2K for the southern hemisphere, see F
13~a!. For thel th cell we define a characteristic~normalized!
density functionul ) which is constant inside the cell an
vanishes outside. The matrixA(2K) is designed to mimic the
FP operatorP in this basis

FIG. 12. The averaged overlaps and semiclassical predict
for the negative coupling~cf. Fig. 10!. The quantum result and th
semiclassical prediction from approximate resonances coinc
while the peak corresponding to the coupling resonance is m
sharper for the prediction from traces calculated with the use
periodic orbits. This is due to the fact that the approximate re
nance in question has not reached the final resonance pos
which is calculated analytically~cf. Sec. II B!. Quantum uncertainty
and noise seem to have the same coarse-graining effect.
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Ail
(2K)5~ i uPu l !. ~34!

This is indeed some kind of coarse graining of t
Frobenius-Perron operator analogous to the Ulam method
the classical system. For a strongly chaotic dynamics
matrix elements fluctuate around 1/K, but in this simplifica-
tion these fluctuations will be neglected. Thus the matrix
the uncoupled systemA0

(2K) becomes

A0
(2K)5S w(K) 0

0 w(K)D , ~35!

wherewik
(K)51/K. The eigenvalues of this matrix are easi

calculated as (1,1,0, . . . ,0), where the degeneracy of eigen
value 1 is due to the disjoint invariant densities on ea
hemisphere.

To generate a nonzero resonance we introduce a coup
between both hemispheres as a rotation of the sphere bQ
around thex axis ~perpendicular to the plane of Fig. 13!. The
system size is chosen that (Q/2p)2K5k is integer. In this
representation the rotation becomes ak-fold cyclic permuta-
tion of the cells. Then the~coupled! system is described by

AQ
(2K)5CQ

(2K)A0
(2K) , ~36!

where CQ
(2K) is a permutation matrix acting asi→ i 5 i

1k mod 2K, see Fig. 13~b!. A k-fold permutation of cells
acts on the block-diagonal matrix like ak-fold shift of the
row vectors, where the trace of this matrix changes for e
permutation by22/K as long ask is smaller thanK. The
eigenvalues of this shifted matrix are easily calculated. Si
the matrix is still of rank 2, 2K22 eigenvalues are equal t
zero. One eigenvalue must be 1, because the matrix is do
stochastic. Thus the missing eigenvalue can be calcul
from the trace asl15tr A(2K)21. Finally, the eigenvalue
becomesl15(2K22k)/K215122Q/p.

By varying the rotation angleQ the second resonance
controllable over the range@21,1#. For Q50 the eigen-
value 1 is degenerated, since we have two uncoupled
tems. A rotation withQ5p/2 mixes both sides uniformly
such that the resonance goes to 0. Finally, choosingQ5p
the hemispheres exchange completely after one m
whereby the resonance becomes21.

The quantization of such a system is easily done. T
separated chaotic dynamics on each hemisphere corres
to a Floquet matrix which is block diagonal in the usu
u j ,m& basis. Due to the phase-space partition we use e
dimensions of the Hilbert space, otherwise we are not abl

ns

e,
ch
f
-

ion

FIG. 13. ~a! The sphere is partitioned into 2K sectors.~b! A
rotation of the sphere permutes the sectors. Here the angleQ coin-
cides with one sector for simplicity.
1-9
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assign the stateu j ,m50& to one of the hemispheres. Th
block matrices are chosen as random unitary matrices du
the strongly chaotic dynamics. The coupling becomes a
tation matrixRx(Q)5e2 iQ Ĵx,

U5Rx~Q!S U1 0

0 U2
D , ~37!

andU1,2 are independent random unitary matrices distribu
according to the Haar measure onU(N/2).

We choose two different coupling anglesQ50.5 andQ
5p10.5, where the resonances becomel656(121/p),
respectively. For each case the Hilbert space dimensio
N5200. Due to the semiclassical prediction the avera
overlaps distribute as

^uuQikuu2&~v!}11
1

N21 (
n51

`

l6
n cos~nv!. ~38!

As in the case of the coupled baker maps we use the smo
ing with a sinc function of form sin(10v)/v. Figure 14
shows the averaged overlaps,^uuQikuu2&(v), for the positive
resonancel1 , while in Fig. 15 we see the results for th
negative resonancel2 . For both cases we find a good agre
ment with the semiclassical prediction. The small fluctu
tions ~much smaller than the Lorentz peaks! of the quantum

FIG. 14. Comparison of averaged overlaps with the semicla
cal prediction for CRM with positive coupling. For the quantu
results~solid! we find good agreement with the semiclassical p
diction ~dotted!. Uniform spectrum predicted by RMT is denoted b
a dashed line.

FIG. 15. Averaged overlaps of CRM and semiclassical pred
tion for negative coupling~cf. Fig. 14!.
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results are nongeneric, i.e., they look different if one choo
other pairs of random matrices.

VI. CONCLUDING REMARKS

We investigate classical systems whose Frobenius-Pe
operators have resonances with large moduli. Such lo
lived excitations have a strong impact on the correspond
quantum dynamics. In particular, they constitute a scarr
mechanism for quantum eigenfunctions.

In order to detect resonances we employed the sm
additive-noise approach. The noise was designed such a
ensure a finite-dimensional representation of the Froben
Perron operator which has a unique discrete spectrum.

Our models are chosen such that the classical dynami
well understood—their topological and metric entropies
both equal to ln 2. For all maps analyzed we provide Mark
partitions, as well as the complete sets of periodic orb
Making use of them we could evaluate the classi
Cvitanovic̀-Eckhardt trace formula for the Frobenius-Perr
operator@29# and discuss its relation to the quantum retu
probabilities with respect to coherent states. That ret
probability naturally leads to an intimate relation betwe
long-lived classical resonances and quantum scars. In
system specific quantum localization properties not
plained by the standard ensembles of random matrices
out interpretable statistically on the basis of classical Rue
Pollicott resonances.
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APPENDIX A: EXEMPLARY TRANSITION MATRICES

We present here the transition matrices defined in S
II B for systems ~2! and ~3! for coupling parameterD
51/8. Assuming the lexicographical ordering of cells~that
is, A1 ,A2 ,B1 ,B2 , . . . ), thetransition matrixT1 for the sys-
tem ~2! with positive coupling is equal to

T15
1

8 1
0 4 0 4 0 0 0 0

4 0 4 0 0 0 0 0

0 0 0 0 8 0 0 0

0 0 0 0 0 8 0 0

0 0 0 0 0 0 8 0

0 0 0 0 0 0 0 8

1 0 1 0 2 0 4 0

0 1 0 1 0 2 0 4

2 , ~A1!

while for the negative coupling~3! it reads

i-

-

-

1-10
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QUANTIZATION OF CLASSICAL MAPS WITH . . . PHYSICAL REVIEW E68, 056201 ~2003!
T25
1

8 1
0 4 0 2 0 1 0 1

4 0 2 0 1 0 1 0

0 8 0 0 0 0 0 0

8 0 0 0 0 0 0 0

0 0 0 8 0 0 0 0

0 0 8 0 0 0 0 0

0 0 0 0 4 0 4 0

0 0 0 0 0 4 0 4

2 . ~A2!

It is straightforward to calculate their eigenvalues, and
particular, one gets that the second largest eigenvalue in
case of positive coupling~A1! is equal tol2

15a/611/a

'0.8846 wherea5A3 2713A57, while in the case of nega
tive coupling~A2! one hasl2

252l2
1 .

APPENDIX B: CONTRIBUTION OF POLES
TO THE TRACES OF FP OPERATOR

In order to evaluate the contribution to the trace form
~10! of the poles we first consider stereographic projectio
of their neighborhoods. In case of the north pole we u
stereographic projection from the south pole and vice ve
so that in each case the pole corresponds to the origin o
plane. Next we introduce coordinate system such that
discontinuity line of both points corresponds to the negat
x axis. Using polar coordinates withwP@2p,p# we can
easily express the action of the map~the behavior around the
poles of the ‘‘positive’’ and ‘‘negative’’ version is the same!
and the mapping around the north pole is given by

w→w85w/21p, ~B1!

r→r 85A2 r ,

while for the south pole it reads

w→w85w/2, ~B2!

FIG. 16. The evolution of the phase space around the north
south poles governed by maps~B1! and~B2!—top and bottom row,
respectively.
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r→r 85A2 r .

The action of these maps is presented in Fig. 16. From th
equations it is clear that expression~10! is not well defined at
the poles. In order to regularize it we replace thed function
with a two-dimensional Gaussian of widths, compute the
integral, and later go to the limits→0. To this end we need
square of the distance between the initial point and itsnth
iteration,

d2~r ,w!5r 2@112n72~A2!n cos~1222n!w#, ~B3!

where the upper and the lower sign is for the north and
south pole, respectively. Putting it all together we get that
contribution to the trace ofPn coming from the pole is

lim
s→0

1

2ps2E2p

p

dwE
0

`

dr r expS 2
d2~r ,w!

2s2 D . ~B4!

Performing first the radial integral, we get

1

2pE2p

p

dw
1

112n72~A2!n cos~1222n!w
, ~B5!

which does not depend on the widths. Hence the limits
→0 is automatically obtained. Integral~B5! is elementary
and one gets the following result for the contribution of t
poles:

b7~n!5
2

p

2n

~2n21!2
arctanS ~A2!n71

~A2!n61
tan~1222n!

p

2 D ,

~B6!

where the upper and the lower sign is for the north and
south pole, respectively. If one compares the above va
with the contributions of unstable and inverse unstable
points, then one finds that the south pole can be ne
treated like the unstable fixpoint while the north pole diffe
a bit from the inverse unstable one. To get explicitly expr
sion ~10! for the traces, one has to count the number
periodic points using the connectivity matrixT. For instance,
for map ~3! we obtain

tr Pn5
tr~T2!n2422~21!n

2n122n22
1b1~n!1b2~n!, ~B7!

where we used Eq.~6! and took into account that the Marko
partition does not feel the topology of the system~the lines
t5cosu561 are single points—poles! and also the period
two orbit originating fromw5p and t521/3 is counted
twice ~see Sec. II B and also left hand side of Fig. 8!. Analo-
gously, for map~2! we have

nd
1-11
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tr Pn5
tr~T1!n232~21!n

2n122n22
1b1~n!1b2~n!. ~B8!

In case of the standard baker map on the sphere@D51/2 case
of maps ~2! and ~3!# we are able to find the analytica
-

e:
d

y,

://

-

05620
expression for the number of periodic points so the trace
FP operator are given by

tr Pn5
2n232~21!n

2n122n22
1b1~n!1b2~n!. ~B9!
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